link-state terlebih dahulu. Algoritma dasar kedua yang digunakan dalam proses routing adalah algoritma link-state . Algoritma routing link-state-based dikenal juga sebagai shortest path first (SPF). Algoritma ini mengelola suatu database kompleks dari informasi topologi. Jika algoritma distance vector tidak memiliki informasi spesifik mengenai jaringan-jaringan jauh dan tidak mengetahui router-router jauh, maka algoritma routing link-state mengelola secara penuh pengetahuan mengenai jarak router dan bagaimana mereka terhubung.
Routing link-state menggunakan link-state paket (LSP), suatu database topologi, algoritma SPF, yang menghasilkan SPF tree , dan pada akhirnya akan dihasilkan routing table dari jalur dan port untuk setiap jaringan.
Routing link-state memiliki keunggulan pada jaringan besar karena beberapa alasan berikut:
• Protokol link-state hanya mengirim update dari topologi yang berubah saja
• Periode update lebih jarang dibanding protokol distance vector .
• Routing link-state dapat disegmentasi ke dalam hirarki-hirarki area yang dapat membatasi jangkauan
perubahan-perubahan rute.
• Mendukung classless addressing .
• Routing link-state mengirim subnet mask bersama dengan update routing .
Protokol routing link-state mengurangi trafik broadcast karena protokol ini tidak secara periodik melakukan broadcast ataupun mengirimkan seluruh isi tabel routing-nya ketika melakukan broadcast . Protokol routing link-state melakukan pertukaran salinan lengkap tabel rutenya ketika inisialisasi berlangsung. Selajutnya pertukaran update rutenya dilakukan secara multicast dan hanya pada saat terjadi perubahan (dibangkitkan oleh perubahan topologi). Dengan demikian kondisi ini memungkinkan hanya perubahan saja yang dikirim ke router-router lain, bukan seluruh route table -nya.
Berbeda dengan protokol distance vector , protokol link-state harus menghitung informasi metrik rute yang diterimanya. Router akan menghitung seluruh cost yang berhubungan dengan link pada setiap rute untuk mendapatkan metrik rute-rute yang terhubung. Hal ini mengakibatkan router-router yang menggunakan protokol link-state bekerja lebih berat dan memerlukan lebih banyak memory serta siklus pemrosessan.
Perbandingan Protokol Link-State dan Distance Vector. Fitur Protokol Link-State
a. Steady-State Operation
Tidak seperti protokol distance vector , protokol link-state menjaga hubungan dengan neighbor melalui pengiriman paket-paket kecil secara tak berkala dan jarang (kadang-kadang). OSPF menyebut paket kecil ini dengan Hello packets . Hello packet secara sederhana mengidentifikasi subnet dan keaktifan link serta router neighbor.
Ketika router gagal menerima paket Hellos dari neighbor pada suatu interval tertentu (dinamakan dead interval), router akan mempercayai bahwa router bersangkutan mengalami kegagalan dan menandainya dengan “down” pada database topologi-nya. Kemudian router berhenti menerima paket Hello dan mulai menjalankan Djikstra untuk menghitung kembali rute-rute baru.
b. Loop Avoidance
Algoritma SPF mencegah loop yang secara natural telah dilakukan bersamaan dengan pemrosessan database topologi, sehingga tidak diperlukan fitur loop-avoidance seperti split horizon, poison reserve, hold down timer, dan lain sebagaianya.
c. Scalling OSPF Through Hierarchical Design
Pada jaringan besar dengan ratusan router, waktu konvergensi OSPF dapat melambat, dan membutuhkan banyak memory, serta pembebanan prosessor. Masalah ini dapat diringkas sebagai berikut:
• Pada topologi database yang besar dibutuhkan lebih banyak memory dalam setiap router.
• Pemrosessan database topologi yang besar dengan algoritma SPF membutuhkan daya pemrosessan yang bertambah secara eksponensial sebanding dengan ukuran database topologi.
• Satu perubahan status interface (up ke down atau down ke up) memaksa setiap router untuk menjalankan SPF lagi.
Meskipun demikian, tidak ada definisi yang tepat untuk mendeskripsikan “jaringan besar”. Sebagai patokan (sangat umum, bergantung pada desain, model, router, dan lain-lain), untuk jaringan dengan paling sedikit 50 router dan 100 subnet, fitur OSPF scalability seharusnya digunakan untuk mengurangi problem di atas.
d. OSPF Area
Penggunaan OSPF area dapat memecahkan banyak (tidak semuanya) permasalahan mendasar ketika menjalankan OSPF pada jaringan besar. OSPF area memecah-mecah jaringan sehingga router dalam satu area lebih sedikit mengetahui informasi topologi mengenai subnet pada area lainnya. Dengan database topologi yang lebih kecil, router akan mengkonsumsi memory dan proses yang lebih sedikit.
OSPF menggunakan istilah Area Border Router (ABR) untuk mendeskripsikan suatu router yang berada diantara dua area (perbatasan). Suatu ABR memiliki database topologi untuk kedua area tersebut dan menjalankan SPF ketika status link berubah pada salah satu area. Penggunaan area tidak selamanya mengurangi kebutuhan memory dan sejumlah penghitungan SPF untuk router ABR.
e. Stub Area
OSPF mengijinkan pendefinisian suatu area sebagai stub area, sehingga dapat mengurangi ukuran database topologi. OSPF juga mengijinkan varian area lain yang dapat mengurangi ukuran database topologi, dimana juga akan mempercepat pemrosessan algoritma SPF. Tipe area terbaru saat ini adalah Totally Not-So-Stubby Area (TNSSA).
Routing link-state menggunakan link-state paket (LSP), suatu database topologi, algoritma SPF, yang menghasilkan SPF tree , dan pada akhirnya akan dihasilkan routing table dari jalur dan port untuk setiap jaringan.
Routing link-state memiliki keunggulan pada jaringan besar karena beberapa alasan berikut:
• Protokol link-state hanya mengirim update dari topologi yang berubah saja
• Periode update lebih jarang dibanding protokol distance vector .
• Routing link-state dapat disegmentasi ke dalam hirarki-hirarki area yang dapat membatasi jangkauan
perubahan-perubahan rute.
• Mendukung classless addressing .
• Routing link-state mengirim subnet mask bersama dengan update routing .
Protokol routing link-state mengurangi trafik broadcast karena protokol ini tidak secara periodik melakukan broadcast ataupun mengirimkan seluruh isi tabel routing-nya ketika melakukan broadcast . Protokol routing link-state melakukan pertukaran salinan lengkap tabel rutenya ketika inisialisasi berlangsung. Selajutnya pertukaran update rutenya dilakukan secara multicast dan hanya pada saat terjadi perubahan (dibangkitkan oleh perubahan topologi). Dengan demikian kondisi ini memungkinkan hanya perubahan saja yang dikirim ke router-router lain, bukan seluruh route table -nya.
Berbeda dengan protokol distance vector , protokol link-state harus menghitung informasi metrik rute yang diterimanya. Router akan menghitung seluruh cost yang berhubungan dengan link pada setiap rute untuk mendapatkan metrik rute-rute yang terhubung. Hal ini mengakibatkan router-router yang menggunakan protokol link-state bekerja lebih berat dan memerlukan lebih banyak memory serta siklus pemrosessan.
Perbandingan Protokol Link-State dan Distance Vector. Fitur Protokol Link-State
a. Steady-State Operation
Tidak seperti protokol distance vector , protokol link-state menjaga hubungan dengan neighbor melalui pengiriman paket-paket kecil secara tak berkala dan jarang (kadang-kadang). OSPF menyebut paket kecil ini dengan Hello packets . Hello packet secara sederhana mengidentifikasi subnet dan keaktifan link serta router neighbor.
Ketika router gagal menerima paket Hellos dari neighbor pada suatu interval tertentu (dinamakan dead interval), router akan mempercayai bahwa router bersangkutan mengalami kegagalan dan menandainya dengan “down” pada database topologi-nya. Kemudian router berhenti menerima paket Hello dan mulai menjalankan Djikstra untuk menghitung kembali rute-rute baru.
b. Loop Avoidance
Algoritma SPF mencegah loop yang secara natural telah dilakukan bersamaan dengan pemrosessan database topologi, sehingga tidak diperlukan fitur loop-avoidance seperti split horizon, poison reserve, hold down timer, dan lain sebagaianya.
c. Scalling OSPF Through Hierarchical Design
Pada jaringan besar dengan ratusan router, waktu konvergensi OSPF dapat melambat, dan membutuhkan banyak memory, serta pembebanan prosessor. Masalah ini dapat diringkas sebagai berikut:
• Pada topologi database yang besar dibutuhkan lebih banyak memory dalam setiap router.
• Pemrosessan database topologi yang besar dengan algoritma SPF membutuhkan daya pemrosessan yang bertambah secara eksponensial sebanding dengan ukuran database topologi.
• Satu perubahan status interface (up ke down atau down ke up) memaksa setiap router untuk menjalankan SPF lagi.
Meskipun demikian, tidak ada definisi yang tepat untuk mendeskripsikan “jaringan besar”. Sebagai patokan (sangat umum, bergantung pada desain, model, router, dan lain-lain), untuk jaringan dengan paling sedikit 50 router dan 100 subnet, fitur OSPF scalability seharusnya digunakan untuk mengurangi problem di atas.
d. OSPF Area
Penggunaan OSPF area dapat memecahkan banyak (tidak semuanya) permasalahan mendasar ketika menjalankan OSPF pada jaringan besar. OSPF area memecah-mecah jaringan sehingga router dalam satu area lebih sedikit mengetahui informasi topologi mengenai subnet pada area lainnya. Dengan database topologi yang lebih kecil, router akan mengkonsumsi memory dan proses yang lebih sedikit.
OSPF menggunakan istilah Area Border Router (ABR) untuk mendeskripsikan suatu router yang berada diantara dua area (perbatasan). Suatu ABR memiliki database topologi untuk kedua area tersebut dan menjalankan SPF ketika status link berubah pada salah satu area. Penggunaan area tidak selamanya mengurangi kebutuhan memory dan sejumlah penghitungan SPF untuk router ABR.
e. Stub Area
OSPF mengijinkan pendefinisian suatu area sebagai stub area, sehingga dapat mengurangi ukuran database topologi. OSPF juga mengijinkan varian area lain yang dapat mengurangi ukuran database topologi, dimana juga akan mempercepat pemrosessan algoritma SPF. Tipe area terbaru saat ini adalah Totally Not-So-Stubby Area (TNSSA).
Tidak ada komentar:
Posting Komentar